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ABSTRACT 

The minimum uncertainty product form of Heisenberg’s Uncertainty Principle 
is applied to the electron-phonon interaction in metals in the free-electron and 
Debye approximations. Twice the Debye frequency follows as an upper limit to 
the electron-phonon scattering rate. This is an extension of an earlier application 
to the 3-phonon anharmonic scattering rate, and Lindemann’s law of melting 
follows in both cases. Corrections and clarifications of the earlier work are in- 
cluded. It is shown that the electron-phonon relaxation time, the Debye zone- 
boundary phonon relaxation time, the ion-ion collision time on the liquid side of 
melting, and the inverse of twice the Debye frequency are all approximately equal 
at the melting point. 

INTRODUCTION 

In several earlier articles, J made use of the energy-time Uncertainty Principle 
(UP) to obtain a number of results connected with melting (Armstrong, 1986, 
1988a, 1988b, 198%~). Initially, Lindemann’s law of melting was derived from the 
3-phonon anharmonic transition rate of Roufosse and Klemens (1973) and, in 
addition, a lower bound on diffusion coefficients of simple solids at the melting 
point was obtained. This lower bound was found to he a good approximation to 
actual diffusion coefficients at the melting point of alkali metals and alkali halides. 
Next, it was found to also provide a good approximation for electrical 
conductivities and volume expansion of alkali halides at the melting point 
(Armstrong, 1988a). The estimates of diffusion coefficients and electrical 
conductivities were carried out in the Debye approximation to phonon theory, are 
exceedingly simple, and involve no adjustable parameters. The fusion volume ex- 
pansion of alkali halides was also estimated with favorable accuracy with the re- 
placement of the maximum frequency phonon modes by single-particle ion motion 
in terms of an Einstein oscillator model. I,ater (Armstrong, 1988c), the diffusion 
coefficient formula was found to provide a similarly good approximation for the 
more complex solids H, and N, at the melting point and to provide a well-known 
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empirical expression for the self diffusion of liquid metals at the melting point 
(lida and Guthrie, 1988). The minimum uncertainty product form of Heisenberg’s 
Uncertainty Principle was used in the initial derivations (Armstrong, 1986, 1988a), 
and only later (Armstrong, 1988b) was it recognized that, for the phonon-phonon 
interaction case leading to Lindemann’s law, one was dealing with a classical, not 
a quantum system, and the “Uncertainty Principle‘ involved was the classical Un- 
certainty Principle of the well-known limit on the Fourier resolution of a function 
of time of finite duration (See, e. g., Kramers, 1958; Papoulis, 1962). The results 
are the same because ti cancels out of the equations. I am not herein attributing 
a quantum, character to ordinary melting, but am attempting to clarify a situation 
wherein quantum derivations yield classical results more readily than classical 
derivations. It should be noted that the Roufosse-Klemens (1973) 3-phonon 
anharmonic transition rate is independent of W even though it is derived by second 
quantization. 

Fundamental to these earlier results is the upper limit to the anharmonic phonon 
transition rate established by the UP, along with the assumption that this upper 
limit is reached at the melting point T, by the maximum frequency phonons in 
the lattice. This upper limit, where the phonon energy and linewidth become 
comparable, expresses the condition whereby the maximum frequency phonons 
lose their validity as collective excitations. The basic idea of this approach, viz., 
establishing a condition for loss of validity of certain phonons as collective 
excitations is somewhat analogous to the self-consistent-phonon (SCP) theory as 
represented by the work of Moleko and Clyde (1983, 1984). In that approach, an 
average squared phonon frequency is computed as a function of temperature. A 
critical temperature is found above which there are no real solutions. The phonon 
frequency becomes imaginary and therefore the phonon does not exist as a valid 
collective excitation, or travelling wave normal mode. 

It is the purpose of the present article to summarize the results of the unpub- 
lished reports (Armstrong, 1988b,c) and clarify two published articles (Armstrong, 
1986, 1988a). In addition to improved interpretation of earlier work, the present 
article presents new results for free-electron solids. In extending our earlier con- 
siderations to conduction electrons in metallic crystals, it is found that, at the 
melting point, electron-phonon scattering is related to phonon-phonon scattering, 
as well as to ion-ion scattering. These results are somewhat surprising, since there 
appears to be no npriori reason why such relationships should exist. Upon close 
examination, however, it appears that they may be required for consistency with 
a unique and sharply defined melting point. The analysis undertaken herein is 
limited to the free-electron approximation. Lifting this approximation would be 
of doubtful value unless the Debye approximation were also dispensed with. 
Neither of these improvements appears crucial to the concepts proposed herein, 
and would greatly complicate initial presentation of the theory. 
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ELECTRON-PHONON SCATTERING AT THE MELTING POINT 

Application of the Uncertainty Principle 

In the case of electron-phonon scattering, it may be recalled that the electron- 
phonon interaction depends on the vibration amplitude in the crystal. This is, e. 
g., displayed explicitly in Eq. II.84 of Kittel (1956, p. 303) in the form 

Qci = (;i. d12Q,v 5 (1) 

where (to quote Kittel), “a is the effective cross section for scattering of an 
electron by a displaced ion in an otherwise perfect lattice, and @ is the free space 
scattering cross section for an isolated ion”. The vector with magnitude d denotes 
the displacement of the ion, while 4’ is the phonon wavevector. Now if one be- 
lieves, as conventionally asserted in Lindemann theory, that a critical value of d 
exists which marks the onset of lattice instability, then this effect should also be 
reflected in the electron-phonon scattering rate according to Eq. (1). This analogy 
suggests, but is not necessary to, the application of the UP arguments to the 
electron-phonon system. 

In the present case, we start at the outset with the Debye approximation to 
phonon theory. This approach circumvents the necessity of decomposing the 
electron-phonon transition rate into components of the electron-phonon inter- 
action for each wavevector. Loss of accuracy due to this approach is justified by 
lack of precise knowledge of that interaction term. Alternatively, we can appeal 
to the “dominant phonon” approximation under which we would treat the system 
as containing only phonons of frequency c),, at the melting point. 

We write the energy-time UP in the minimum uncertainty product form as be- 
fore, 

-J-I- 
2AE, 

rep A (2) 

where AE, is, of course, the uncertainty in the electron energy and rep is the 
electron-phonon relaxation time. This minimum-product form obtains only for the 
case of Gaussian distributions of the uncertainties in the relevant dynamical vari- 
ables. The validity of this form is assumed herein without a priori justification as 
a fundamental premise of the approach. If it is further assumed that the electrons 
available to interact with phonons are on the Fermi surface with well-defined en- 
ergy, we have 

AE, I tic~,~ , (3) 

where c~,, is the Debye angular frequency, viz., the maximum frequency of the 
phonons from which (in the Debye approximation) the electron can scatter. One 
knows that thermally excited electrons perturb the Fermi distribution in a range 
= f k,T on each side of the Fermi surface, where k, is Boltzmann’s constant and 



T is the absolute temperature in kelvins. But statistically single scattering is more 
probable than multiple scattering, i. e., it will be more probable for an electron 
on the surface to scatter than for an excited electron to scatter (the excited fraction 
at the melting point is of the order of T,/T,; , where T,; is the Fermi temperature, 
and this ratio is small). Nonetheless, the fact that the electron being scattered by 
a phonon is not guaranteed to be precisely on the Fermi surface vitiates the rig- 
orous nature of Eq. (3) as an inequality, as does the use of the Debye approxi- 
mation. Thus, our results should be interpreted as estimates. The basic 
assumption of the previous articles is now invoked, namely, that the UP inequality 
becomes an equality at the melting point. 

From Eqs. (2) and (3), this assumption takes the form 

The physical interpretation proposed here is the same as that advanced in Ref. I; 
namely, that the maximum frequency phonons lose their validity at T,,,, providing 
single-particle ion motion on the time scale (20,,)-‘. As will be demonstrated 
below, this is the same time scale as that of the experimental free electron relaxa- 
tion time z = mo/ne2, where (T is the experimental electrical conductivity, and n, 
e, and m are the electronic concentration, charge, and mass, respectively. Thus, 
on the average, an electron will make one collision during the time period over 
which the ion is moving as a free particle. This collision will not be subject to the 
UP in the form stated above since it will not involve a phonon, but will be de- 
termined by the dynamics of the electron-ion scattering process. Application of 
the UP to the electron-phonon system can only be made on the solid side of the 
melting transition where the phonon is still a valid excitation. Therefore, the in- 
equalities asserted above must become invalid at T,,, , and we expect an increased 
scattering rate, or decreased relaxation time in the liquid phase. In terms of Eq. 
(I), a larger value of d becomes available on the liquid side. This is confirmed for 
eight alkali and noble metals in Table 1 of Armstrong (1988b). This table gives 
a comparison of experimental values of T,[, the electronic relaxation time in the 
liquid at the melting point with I/(~w,,) , the estimate asserted above of the re- 
laxation time on the solid side of the melting point. The ratio of these two 
quantities is confirmed to be less than unity in all cases; the average for all cases 
is 0.26. From data given by Faber (1972), it can be seen that the average of ex- 
perimental values of pJp,, the ratio of electrical resistivities of the solid and liquid 
states, is 0.56 for these eight cases. Since this resistivity ratio is equal to z&.+, on 
the classical kinetic model, the comparison of Table 1 in the reference given above 
indicates that the UP estimate of zep at the melting point is within a factor 2, on 
the average, of experiment. A direct comparison with experiment as well as other 
theory will be given below. 

It is expected that, for describing the maximum lattice vibrational frequencies 
the most appropriate Debye temperatures will be elastic-constant values. But 
values are needed at the melting point, and these are not available. Melting-point 
values may be approximated by room-temperature values because it is generally 
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considered that Debye temperatures for most ordinary solids do not vary sub- 
stantially above room temperature (e. g., Meaden, 1965, p. 101). For example, 
Blackman (1955, p. 372) notes that his type a Debye temperature is the most 
common and is found in the cubic metals. For this type, T, approaches a high- 
temperature asymptote at or below room temperature. Unfortunately, a consist- 
ent, accurate set of room-temperature elastic-constant Debye temperatures is not 
available for the alkali metals. The problems associated with available values are 
discussed in Armstrong (1988b). As an alternative, we approximate the alkali 
metal melting-temperature Debye temperatures by the specific heat (entropy) val- 
ues given in the careful assessment of Martin (1965). Martin’s results go up to 300 
K, where they are seen to be slowly decreasing due to anharmonicity. The accu- 
racy of the present approach does not warrant an extrapolation to T,. To main- 
tain consistency, Kelly’s (1954) specific heat values are used for T,, of Cu, Ag, and 
Au, taken from Figs. 4, 7, and 10, respectively, of that reference. The first column 
of Table I lists this selection of Debye temperatures. 

TABLE I 

Comparison of electrical resistivities at the melting point. Units are 10e6 Q cm. 
The Debye temperatures and the Debye resistivity temperatures used are shown in 
the second and third columns. 

Species T,(K) T,(K) Pu Ps PC fw) 

Li 373 440 9.3 5.7 15.5 
Na 149 195 7.5 5.8 6.6 
K 86.9 110 8.0 8.0 8.32 

cu 310 333 4.1 3.9 10 
Ag 217 223 4.0 4.1 8.2 
Au 175 175 3.2 4.0 13.7 

When we come to the evaluation of electrical resistivities from the Bloch high- 
temperature formula (Ziman, 1963) the so-called “electrical resistivity” values of 
Debye temperature, usually labelled TR, are generally used. These are typically 
calculated either by fitting the Bloch formula or by fitting the ratio of values of 
the Bloch formula at two different temperatures, and have usually only been of 
interest at low temperatures. As a result, there is an even greater paucity of data 
on these parameters towards high temperature than for T,, . Their computation 
is reviewed at length by Meaden (1965) who also tabulates values of TR. Such 
resistivity values of the Debye temperature are effectively adjustable parameters 
which compensate to some extent for the approximations of Bloch theory such 
as spherical Fermi surface, free-electron approximation, neglect of U processes, 
and simplified electron-phonon interaction. Here again, as in the case of T,,, there 
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is no clearly appropriate choice for our purposes as discussed in Armstrong 
(l988b). Therefore, the somewhat arbitrary choice is made to use, for the alkali 
metals, the values given by Meaden (1965) for the temperature range T,/3 to T, . 
These values have the advantage of being corrected to a constant density and the 
disadvantage that this is the 0 K density. For Cu, Ag, and Au, Griineisen’s (1933) 
original values are used because he included resistivity data in their determination 
taken over temperature ranges that approach a significant fraction of the melting 
temperature for these metals. This selection of T, values is given in the third 
column of Table I. They were used to evaluate pv and pR as given in columns four 
and five of Table I. The Debye temperatures listed in the second column of Table 
I were used in the comparison of solid-liquid electronic relaxation times men- 
tioned in the preceding paragraph, and in results yet to be described below. 

The electron-phonon scattering rate, as measured by the electrical resistivity, in- 
creases as T towards high temperature (Ziman, 1963; Pines, 1964, p. 52) like the 
three-phonon transition rate (Roufosse and Klemens, 1973). Hence, it should 
reach its maximum at the melting point. One can test this assertion by use of 
1/(2uQ for T in the classical kinetic formula for the electrical conductivity IX 

II = ne2z/m . (5) 

With ‘t taken to be rep = l/(20,) as derived above, the “Uncertainty Principle” 
resistivity pu at the melting point becomes 

p[J = = 9.31x1014+ Q cm. 

It is interesting now to compare the result of Eq. (6) with experiment and with 
prediction of the high-temperature Bloch theory. The Bloch electron-phonon 
transition rate, which we denote 7;: can be obtained through use of Eq. (5) from 
the Bloch resistivity formula given by Ziman (1963) for the range T/T,,% I. The 
result is 

-1 n3ti2v NT F Z&l S 
4MkhT; 

(7) 

In this equation, N, M, and vr, are the number of unit cells per unit volume, the 
unit cell mass, and the Fermi velocity, respectively. The Bloch resistivity p. from 
which Eq. (7) was derived can be evaluated as 

p&T,,,) = 4.78x10 
-10 (n+ T,) 

AT; 
Ci cm, (8) 

where A is atomic weight. Table I shows, for six metals, in addition to the Debye 
temperatures discussed above, a comparison between pu, pB , and p( exp), where 
the latter is the experimental result given by Cusack (1963). The electron/ion 
concentrations employed for this calculation are melting point values given by 
Ubbelohde (1978). The UP result clearly provides the proper order of magnitude, 
coming within about a factor 2 of experiment for all cases but gold. The results 
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shown in Table I are typical of agreement between free-electron theory results and 
experiment (cf. MacDonald, 1956). The relatively closer agreement between pt/ 
and ~a lends substantiation to our fundamental assumption l/z, = 20, at T,,,. 
This is, of course, the same as the fundamental assumption made earlier for the 
Debye zone boundary transition rate for 3-phonon processes, namely, 
1 I+& = 201, at T,,,, where l/z(o,),,, is the Debye zone boundary value of the 
three-phonon transition rate. Consequently, the fundamental assumption requires 
the total electron-phonon scattering rate to be equal to an average frequency- 
maximum three-phonon scattering rate at the melting point. This latter rate is 
approximated by the Debye zone boundary rate herein. Originally it was proposed 
to take the average only over longitudinal modes (Armstrong, 1988a) A more 
general formulation of the average required was proposed in Armstrong (1988b) 
and is summarized in the Appendix. 

The approximate agreement shown in Table 1 between the resistivity given by the 
Bloch formula and the UP formula also substantiates agreement between the 
electron-phonon scattering rate and the frequency-maximum three-phonon scat- 
tering rate at the melting point. There appears to be no apriori reason why any 
direct relationship should exist between the electron-phonon and three-phonon 
anharmonic transition rates, so the relationship may be connected with the melting 
process. It is suggested that such a relationship is required in order for there to 
be a unique, sharply defined melting point. The reasoning is as follows, stated in 
the context of the Debye approximation for simplicity of presentation. The con- 
cepts are not limited by this approximation. 

It can be assumed that l/z(o,,), reaches its maximum value as a function of 
frequency at oD , and that both l/z, and I/r, increase linearly with T towards 
high T. From the UP argument above given above, 204, is the maximum value 
of both these transition rates. We know that l/z, reaches its maximum at T,,, and 
that the total electron scattering rate (assumed equal to l/z, below T,,,) increases 
discontinuously across the solid-liquid transition. This discontinuous increase is 
due to the electron-ion scattering that sets in at T,,, concomitantly with the onset 
of single-particle ion motion (Faber, 1972). Now if I/r(n),,),,,, were to reach the 
value 204, before l/r, reaches this value, single particle motion would have set in 
without affecting the electron scattering rate (because the highest frequency 
phonons will have lost their validity as collective excitations according to the 
fundamental hypothesis stated above). Thus, melting would occur without the 
requisite jump in the electron scattering rate. Conversely, if the electron scattering 
rate reaches 2a), and the discontinuous jump before I /7(0&, reaches 2a),, melting 
will have occurred according to the behavior of the electron-phonon scattering, 
but not according to I/z(u+,),,. According to the behavior of this latter quantity, 
all phonons would still be valid collective excitations and no single-particle motion 
would be possible. Thus, we have an inconsistency unless both transition rates 
reach their common maximum 2a,, at the same temperature. Furthermore, the 
relaxation time determined by these transition rates is equal to the ion-ion colli- 
sion rate as shown in Armstrong (1986 and 1988a). This happens because the 
motion lost from the spectrum of phonon excitations as the maximum-frequency 
phonons lose validity is converted into single-particle motion of the ions. 
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In view of the above finding, it is appropriate to compare T(o,,)~,, , used previ- 
ously to derive the Lindemann melting law from the assertion of its equality to 
(2a),)-‘, with the Bloch electron-phonon relaxation time, as well as with the ion- 
ion relaxation time. Furthermore, if all is to be consistent, it must be possible to 
obtain Lindemann’s law from the Bloch expression. 

Comparison of Bloch, three-phonon, and ion-ion relaxation times 

The three-phonon, Debye-zone-boundary transition rate expression referred to 
above and used in our earlier work is that given by Roufosse and Klemens (1973) 
evaluated at w = ctiu: 

T/,&WI), T) -’ = I 2&r3y2kgT 

Ma’wB 

In this expression, a is the lattice constant used by Ziman (1963) and Roufosse and 
Klemens (1973), defined such that a” = I/N, and y is the Griineisen parameter. 
The numerical coefficient is that of Eq. (20b) of Roufosse and Klemens, adjusted 
empirically by a factor 4/9 for bee alkali metals. Roufosse and Klemens derived 
their formula for SC crystals after strong approximations on the form of surfaces 
in 9’ space. Hence, the precise coefficient is not well-determined resulting in a 
defacto adjustable parameter, although in principle the theory is deterministic. 
As noted previously, if Eq. (9) is equated to 2wn, Lindemann’s law is obtained. 

TABLE II 

Comparison at the melting point of relaxation times in units of lo-l4 s . 

Species (2r0,)-’ 7X exp 9 T,> 

Li 1.4 1.6 1.0 1.1 
Na 2.5 2.5 2.5 3.1 
K 3.5 4.2 4.4 5.2 
cu 1.2 1.5 1.3 2.2 
Ag 1.6 1.7 1.8 2.7 
Au 1.7 1.5 2.2 

The ratio of the Roufosse-Klemens transition rate of Eq. (9) to the Bloch tran- 
sition rate, Eq. (7), yields, with the same Debye temperature in each expression, 
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+D)pp VFIVD = 
‘ell 

, (10) 

where vo is the Debye mean velocity aon/(6n2)$. This ratio is easily seen to be 
of order of magnitude unity. If one uses thermal expansion gammas to approxi- 
mate the large wavevector modal gamma averages required and uses melting point 
values of a and vr , its value is 1.6, 1.7, and 1.9 for the Li, Na, and K, respectively, 
while for Cu, Ag, and Au, it is 1.4, 1.1, and 0.9, respectively. The gammas, dis- 
cussed in Armstrong (1988b), were taken as 0.93, 1.15, 1.15, 1.98, 2.38, and 2.98 
for these six metals in the above order (Vaks, et al., 1978; Barron, Collins, and 
White, 1980). In evaluating the above ratios, the numerical coefficient of Eq. (9) 
was adjusted downward by a factor ( l.55)2 for Cu, Ag, and Au, to account for a 
difference between the fee and bee crystal structures (Armstrong, 1988b) that is 
not included in the Roufosse-Klemens formula. This same factor is also used in 
obtaining the relaxation times for the three fee metals shown in Table Il. The 
ratios of z,,(T,) and z,(T,,) as given in Table II are somewhat closer to unity. 

Setting Eq. (IO) equal to unity (by assumption) has the interesting consequence 
that the product of the Debye mean velocity and squared Griineisen parameter is 
proportional to the Fermi velocity. This is reminiscent of the Bohm-Staver (1952) 
result, which yields a proportionality between the longitudinal sound velocity and 
the Fermi velocity. Equality of the two relaxation times of Eq. (10) also implies 
that the total phonon scattering rate and the three-phonon, Debye zone boundary 
scattering rate are equal not only at the melting point, but also over the asymptotic 
temperature range where both these quantities are linearly proportional to T. 
Furthermore, the ratio of Eq. (IO) can be used to evaluate the lattice thermal 
conductivity at the melting,point for good conductors separately from the electron 
thermal conductivity. Since the lattice component is poorly known for good 
conductors, this may prove to be a useful estimation procedure. 

As indicated above, the Roufosse- Klemens formula depends upon the crystal 
structure (this is discussed from the standpoint of large crystals by those authors) 
and will have different coefficients for different lattices. In the Bloch result, on 
the other hand, error due to omission of U processes, to the precise Fermi surface 
shape, and to approximation of the electron-phonon interaction has been at least 
partially absorbed into the choice of the Debye temperature. Thus, Eq. (10) is 
not necessarily the best way to compare the two expressions. In Table II, we 
compare the explicit relaxation times using the set of T, values (Table I) to eval- 
uate z,,(T,) of Eq. (7), which is used to approximate z,(T,,,). The set of specific- 
heat Debye temperature values (Table I) is used for rpp(~~n, T,) and for (20,)-r. 
The Griineisen gammas used are those quoted above in the paragraph immediately 
preceding Table Il. 

Previously (Armstrong, 1988a), it was assumed that, because of their generally 
higher maximum frequency, only longitudinally polarized modes take part in the 
“mode failure”, or loss of validity process leading to melting. It was then argued 
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that (2aQ’ comprised an approximate lower bound to the ion-ion mean collision 
time ‘So at the melting point; i. e., 

rM(T,) 2 (2a+,) 
-I 

. (IO 

This limitation to longitudinal polarization is lifted in the Appendix. From the 
results obtained in the Appendix, Inequality (I I) is assumed to be true for the 
conventionally defined Debye frequency including the transversely polarized 
branches. 

Now the experimental melting point ion-ion collision time can be estimated for 
five of the metals of Table II from the methods discussed in Armstrong (1986, 
1988a). Therefore, it is of interest to compare these estimates with the prediction 
of Inequality (I 1) as well as with the other relaxation times discussed above. It 
was noted in the above references that ion-ion collision times are sufficiently short 
at the melting point for the perfect gas diffusion law D = k,Tr,/M to apply, where 
D is the self-diffusion coefficient. Thus, we can estimate .t( exp),, the exper- 
imentally determined value of z~, according to 

r( exp)f = 
MD(exp) 

k,T, 
(12) 

where D(exp) is the experimental self-diffusion coefficient at the melting point. 
Values of D(exp) obtained from Faber (1972) and from Nachtrieb (1967) were used 
to compute ion collision times according to Eq. (I 2) for the available cases and 
these are shown in Table II along with the theoretical mean times. For all five 
cases, r(exp), > (2ru,)-’ in agreement with Jnequality (I I). Considering the severity 
of the approximations employed in all cases (spherical Fermi surface, spherical 
surfaces in wave vector space, perfect gas law, etc.), the agreement among the 
various collision, or relaxation, times is quite satisfactory. The different relaxation 
times are all remarkably near equality for each species. The greatest departure 
from equality comes from the ion-ion times. This is hardly surprising, since the 
proposed equality of this parameter involves the additional perfect-gas behavior 
hypothesis which is independent of the hypotheses connecting the other relaxation 
times. In addition, the ion-ion relaxation time estimate is effectively evaluating 
the Debye temperature at the melting point from the self-diffusion coefftcient, 
while the other relaxation times all use Debye temperatures evaluated in a different 
way from room or lower-temperature data. 

ELECTRON-PHONON SCATTERING AND LINDEMANN’S LAW 

Lindemann’s Law from the Bloch Transition Rate 

The foregoing considerations suggest, as was noted above, that rep = (2w,)-’ de- 
fines T, in terms of the electron-phonon transition rate, just as zpp = (204,)-r was 
found to define T, in terms of the three-phonon transition rate by yielding 
Lindemann’s law. Therefore, the high-temperature Bloch transition rate of Eq. 
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(7) is equated to 2~0, at T = T,,, . The result of this assertion can be readily re- 
duced to the Lindemann form 

2 

kRT,,, = 
T&, 5A 

c2 ’ 
(13) 

where A, again, is atomic weight, V, the atomic volume ( a3 ), and C is the col- 
lection of constants and parameters defined by 

2 

C2G 
x(6x2)TLv,ti2 

48v,k; 
(14) 

Thus, as anticipated, we have yet another source of Lindemann’s law. Numerical 
evaluation yields: 

c = 5.91q$ sxK. (15) 

Jt should be noted that the factor ti2 that appears in Eq. (14) is an artifact of the 
conventional definition, Eq. (13), of Lindemann’s law. This factor, along with 
k2, cancels against the Debye temperature in the numerator of Eq. (13). However, 
the Fermi velocity remains. Hence, the Lindemann melting law for metals, derived 
above from the Bloch formula, reflects a quantum-mechanical influence of the 
conduction electrons on the melting process. As was the case with the three- 
phonon transition rate Lindemann law, the parameter C will not be the same for 
different species even of the same crystal class. The Fermi and Debye velocities 
will always differ from metal to metal. However, the variation will be relatively 
slight again for some cases because the magnitude of these parameters does not 
change much between species in some metal groups. 

Table III presents values of the Lindemann constants C for the six metals of 
Tables J and II, plus Al. These constants, labelled C, , have been calculated from 
Eq. (15) with vo determined from the specific heat Debye temperatures of Table 
I. Predicted melting temperatures are also shown in the table. These are labelled 
T,(th), and have been computed from Eq. (13), with T, replaced by T,, and the 
listed C,, as the Lindemann constant. Observed melting temperatures T(obs) are 
also given in Table JIJ for comparison. Melting point values of the Fermi velocity 
were used, and the Debye velocity was computed from the melting-point lattice 
constant and room-temperature Debye frequency. The resistivity Debye frequency 
was not used to evaluate the Debye velocity since this velocity does not arise from 
the Bloch transition rate (a function of TR) but from the UP, and is independent 
of Bloch theory. 

The results demonstrated in Table IIJ are comparable to those of Ida (1969) who 
developed a classical “vibrational catastrophe” theory that predicts melting tem- 
peratures for these metals. The individual predictions in Table III all differ sub- 
stantially from those of Ida, but the average absolute error of our results is about 
equal to his. This comparison between experiment and theory is reasonably fa- 
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vorable considering the crudeness of the free-electron approximation and the 
quadratic dependence on the Debye temperature, which is an uncertain quantity 
at best. It should be possible to improve upon the present approach by use of the 
theory reviewed by Grimvall (1981). This is discussed in Armstrong (1988b). 

TABLE III 

Theoretical melting temperatures T,(th) predicted by the free-electron Bloch 
transition rate/Uncertainty principle. The observed values T,,,(obs), and Ida’s 
(1969) values, T,(Ida) , are shown for comparison. The second column gives the 
Lindemann constants C,in set x K . 

Species TXth) T,(obs) T,(Ida) 

Li 112 627 453 475 
Na 160 295 371 393 
K 153 268 336 464 
cu 147 1325 I358 1730 
Ag 155 1170 I235 1220 
Au 173 1050 I338 1070 
Al 139 1113 934 1220 

If one chooses vu in Eqs. (14) and (15) to be determined by the same Debye 
temperature as used in the Bloch transition rate, the melting law, Eq. (13), can 
be reduced further to a form which is slightly different from Lindemann’s law and 
in which the coefficient depends only on fundamental constants. It is not of basic 
significance as a melting law because of its dependence on the strong approxi- 
mations of Bloch theory. But its degree of validity for the metals that are gener- 
ally good candidates for the free-electron theory comprises another measure of 
confirmation of our fundamental hypothesis, which is the sole assumption leading 
to this equation. This equation also has the virtue of having no poorly known 
parameters except for the Debye temperature. This reduced melting law is used 
in Armstrong (1988b) to solve for T,, using observed melting temperatures, in or- 
der see if the results lie within the range of generally accepted values of this pa- 
rameter for free-electron-like metals. They are seen to be in agreement in all cases 
with the range of high-temperature TD values encountered in evaluations from 
specific heats, elastic constants, electrical resistivity, etc. One can conclude that 
this reduced “free electron” melting law is qualitatively sound. Since Debye tem- 
peratures are not known at the melting point, values computed this way may turn 
out to be useful for some of the good free-electron metals. The values for K , 
Cu and Ag, e. g., are essentially the same as the Meaden/Griineisen values used 
above. It is also the case that values for Zn, Cd, and In are essentially the same 
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as certain values for these metals given by Gschneidner (1964). The magnitude 
of most of the Debye temperatures calculated this way indicates that they cannot 
generally be “longitudinal” Debye temperatures along the lines of Meaden’s (1965, 
p 102) discussion. Consequently, as in Meaden’s analysis of the experimental 
values of TR, one is led to conclude that transverse lattice waves are contributing 
to the electron scattering in most, if not all, cases. This is particularly interesting 
in the present context because the three-phonon anharmonic transition rate ap- 
proach to the melting problem (Armstrong, 1986), depending as it does on the 
Debye approximation, does not offer any direct insight into the role of transverse 
phonons in the transition from maximum-frequency phonon breakdown to par- 
tially decoupled single-particle ion motion. The additional dependence of the 
“free-electron” Debye temperature on the electron-phonon interaction provides 
further clues. 

CONCLUSION 

It has been demonstrated that the Uncertainty Principle approach to melting via 
transition probabilities can be extended to the electron-phonon interaction. This 
extension provides additional confirmation of the fundamental hypotheses, in- 
cluding the nature of the onset of single-particle ion motion at the melting point. 
Application of the theory to “free electron” metals through the electron-phonon 
interaction provides an advantage over the three-phonon anharmonic interaction 
approach used earlier. The approximations underlying the Bloch resistivity for- 
mula are better understood than the approximations used by Roufosse and 
Klemens in deriving their high-temperature three-phonon expression. No adjust- 
able parameters appear in the Bloch approach other than the Debye temperature. 
However, knowledge of this parameter, particularly toward the melting point is 
very limited. So even though more confidence can be placed in the electron- 
phonon scattering approach, its quantitative results are no better than those of the 
earlier theory. The connection between the two approaches is interesting, since 
both must apply to metals. The equality of the three-phonon Debye zone 
boundary transition rate and the electron-phonon transition rate in the asymptotic, 
T-proportional region suggests that the three-phonon scattering rate may be more 
than implicitly coupled to conduction electrons. This merits a more detailed cal- 
culation of the three-phonon transition rate, taking into account effects of zone 
structure on the dispersion relations, which was neglected by Roufosse and 
Klemens (I 973). 

It is hoped that the simple theory presented herein will serve as guide and mo- 
tivation to elicit the more theoretically and computationally complex efforts re- 
quired to extend and improve the theory. Large-scale numerical computations on 
crystal models may be able to provide accurate anharmonic transition rates, dis- 
pensing with the numerical uncertainty of the current analytic approximations and 
possibly leading the way to accurate nh irtitio calculations of melting points of 
insulators. Directional and polarization averages of the maximum Brillouin zone 
phonon frequencies as discussed in the Appendix, also requiring large-scale com- 
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put&ion on crystal models, are also of interest to the prediction of accurate 
melting point self-diffusion coefficients and electrical conductivities. 

APPENDIX 

The Debye theory, unfortunately, hides much of the physics involved in the ap- 
proach to the melting process presented above. We attempt to compensate for this 
as follows. In the Debye approximation, there is a unique maximum frequency 
to which we can apply the UP. In a real crystal this is, of course, not the case. 
In each direction in reciprocal space and for each polarization there will, in gen- 
eral, be a different maximum frequency. We could hypothesize that the 
anharmonic three-phonon transition rate behaved such that for each direction and 
polarization, the UP inequality (such as Inequality (2) of the text) becomes an 
equality at T,,, for the maximum frequency mode in that direction and 
polarization. Although this would guarantee a sharp melting point, it seems un- 
realistic; in particular it would imply that the anharmonic transition rate depends 
linearly on frequency in the region near each such maximum. A more realistic 
hypothesis is to require that Inequality (2) becomes an equality at T,,, only on av- 
erage, where the average is taken over the maximum frequencies which occur in 
each direction for each branch. In this way, the melting temperature is defined 
by the equation 

<< I >>. = 
r(Q,G& T,) J 

2< <Q$,‘)> ‘j, (Al) 

where the inner brackets signify an average over solid angle and the outer brackets 
with subscript j, an average over polarizations. The wavevector & is that for 
which ~o(i,j) has its maximum, or “peak” value sZ,(&) in the range 0 I q,, I qze 
in the direction of 4’. From the UP, the mean free time averaged over direction 
and polarization, which we term ‘ly, obeys 

(A21 

where the second step follows from Schwartz’s inequality. Reciprocals of the 
inner-bracketed quantities on both sides of Eq. (A I) could also be used to define 
T,,,, but the same final inequality on z, still holds. The precise value of T,,,, 
however, would differ between the two c.ases. Numerical computation of the av- 
erages over peak frequencies and their reciprocals. as well as the three-phonon 
transition rate might shed additional light on this non-uniqueness in the definition 
of T,,, . 
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